
Hyperlane Security Audit

 � Hyperlane

Dec 3, 2024

Revision 1.0

ChainLight@Theori

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than the
client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not the
client, including affiliates or representatives of affiliates of the client.

© 2024 ChainLight, Theori. All rights reserved

1
2
3
4
4
5
5
6
7
8
8

10
13

15
17

19
21
22
23

25
26

28
30
33

Table of Contents

Hyperlane Security Audit
Table of Contents
Executive Summary
Audit Overview

Scope
Code Revision
Severity Categories
Status Categories
Finding Breakdown by Severity

Findings
Summary
#1 HL2408�001 ISM possible fund lock/theft issue
#2 HL2408�002 OPL2ToL1Ism can be bypassed �Any message can be delivered)
#3 HL2408�003 ACL or replay protection must be added to
AbstractMessageIdAuthHook.postDispatch()
#4 HL2408�004 Users assets could be locked in the interchain account
#5 HL2408�005 _sendMessageId() of OPStackHook and ArbL2ToL1Hook should consider the
case where msg.value and metadata.msgValue(0) are different
#6 HL2408�006 HypERC4626 does not work as a rebasing token
#7 HL2408�007 Wrapped HypERC4626 should be implemented for interoperability
#8 HL2408�008 Custom Hook Quote is not considered in the message dispatch process
#9 HL2408�009 HypERC4626OwnerCollateral._transferFromSender() must return
HypERC4626.PRECISION on the remote chain
#10 HL2408�010 AbstractAggregationIsm.verify() fails when M is not equal to N
#11 HL2408�011 HypERC4626._handle() should restrict out-of-order updates of the
exchangeRate
#12 HL2408�012 Minor Issues
Revision History

 Hyperlane Security Audit | 2© 2024 ChainLight, Theori. All rights reserved

Executive Summary

Starting on Aug 19th, 2024, ChainLight of Theori audited the smart contract of Hyperlane for three
weeks. In the audit, we primarily considered the issues/impacts listed below.

Bypass message validation
Temporary Fund Freeze
Incorrect rebasing token implementation

As a result, we identified issues as listed below.

Total: 12
Critical: 1 �Bypass message validation)
High: 3 �Temporary Fund Freeze)
Medium: 4 �Incorrect rebasing token implementation, ...)
Low: 1
Informational: 3

 Hyperlane Security Audit | 3© 2024 ChainLight, Theori. All rights reserved

Audit Overview

Scope

Name Hyperlane Security Audit

Target /
Version

Git Repository (hyperlane-xyz/hyperlane-monorepo): commit
469f2f34030d9539f2038df302195b6a2dbc94c6 �Apply patch commit)

git diff v3-solidity main --numstat
./solidity/contracts

Application
Type

Smart contracts

Lang. /
Platforms

Smart contracts �Solidity]

Code Revision
N/A

 Hyperlane Security Audit | 4© 2024 ChainLight, Theori. All rights reserved

Severity Categories

Severity Description

Critical
The attack cost is low (not requiring much time or effort to succeed in the
actual attack), and the vulnerability causes a high-impact issue. (e.g., Effect on
service availability, Attacker taking financial gain)

High
An attacker can succeed in an attack which clearly causes problems in the
service’s operation. Even when the attack cost is high, the severity of the issue
is considered “high” if the impact of the attack is remarkably high.

Medium
An attacker may perform an unintended action in the service, and the action
may impact service operation. However, there are some restrictions for the
actual attack to succeed.

Low
An attacker can perform an unintended action in the service, but the action
does not cause significant impact or the success rate of the attack is
remarkably low.

Informational Any informational findings that do not directly impact the user or the protocol.

Note
Neutral information about the target that is not directly related to the project’s
safety and security.

 Hyperlane Security Audit | 5© 2024 ChainLight, Theori. All rights reserved

Status Categories

Status Description

Reported ChainLight reported the issue to the client.

WIP The client is working on the patch.

Patched The client fully resolved the issue by patching the root cause.

Mitigated
The client resolved the issue by reducing the risk to an acceptable level by
introducing mitigations.

Acknowledged The client acknowledged the potential risk, but they will resolve it later.

Won't Fix
The client acknowledged the potential risk, but they decided to accept the
risk.

 Hyperlane Security Audit | 6© 2024 ChainLight, Theori. All rights reserved

Finding Breakdown by Severity

Category Count Findings

Critical 1 HL2408-002

High 3
HL2408-001
HL2408-003
HL2408-009

Medium 4

HL2408-004
HL2408-006
HL2408-010
HL2408-011

Low 1 HL2408-005

Informational 3
HL2408-007
HL2408-008
HL2408-012

Note 0 N/A

 Hyperlane Security Audit | 7© 2024 ChainLight, Theori. All rights reserved

Findings

Summary

ID Title Severity Status

1 HL2408-001 ISM possible fund lock/theft issue High Reported

2 HL2408-002
OPL2ToL1Ism can be bypassed �Any me
ssage can be delivered)

Critical Patched

3 HL2408-003
ACL or replay protection must be added
to AbstractMessageIdAuthHook.po
stDispatch()

High Patched

4 HL2408-004
Users assets could be locked in the inte
rchain account

Medium Patched

5 HL2408-005

_sendMessageId() of OPStackHoo
k and ArbL2ToL1Hook should consid
er the case where msg.value and me
tadata.msgValue(0) are different

Low Patched

6 HL2408-006
HypERC4626 does not work as a rebas

ing token
Medium Patched

7 HL2408-007
Wrapped HypERC4626 should be imple
mented for interoperability

Informational Patched

8 HL2408-008
Custom Hook Quote is not considered i
n the message dispatch process

Informational Won't Fix

9 HL2408-009

HypERC4626OwnerCollateral._tran
sferFromSender() must return HypE
RC4626.PRECISION on the remote cha
in

High Patched

 Hyperlane Security Audit | 8© 2024 ChainLight, Theori. All rights reserved

ID Title Severity Status

10 HL2408-010
AbstractAggregationIsm.verify
() fails when M is not equal to N

Medium Won't Fix

11 HL2408-011
HypERC4626._handle() should restri

ct out-of-order updates of the exchan
geRate

Medium Patched

12 HL2408-012 Minor Issues Informational Patched

 Hyperlane Security Audit | 9© 2024 ChainLight, Theori. All rights reserved

#1 HL2408-001 ISM possible fund lock/theft issue

ID Summary Severity

HL2408-001

Publicly accessible functions (i.e., verify ,
releaseValueToRecipient) on the ISM contracts allow

any user to prematurely trigger the transfer of funds intended
to a recipient, which disrupts the atomicity of the message
processing. This premature release can lead to a scenario
where funds transferred from various chain-specific portal
contracts are locked and become irretrievable.

High

Description
When the recipient uses one of the chain's portal contract (e.g., Portal for Optimism, Outbox for
Arbitrum, ULN/Endpoint for LayerZero), the verifyMessageId function, which handles the
message verification, is called by the portal contract and stores the msg.value . This
msg.value is intended to be transferred to the recipient when the Mailbox calls verify

function.

Under normal operation, the Mailbox calls ISM.verify messages through the process
function. If the message is successfully verified, the specified recipient receives the msg.value
via the releaseValueToRecipient function on the ISM�

// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol
 functionfunction verifyMessageIdverifyMessageId((bytes32bytes32 messageId messageId)) publicpublic payablepayable virtual virtual {{
 requirerequire((
 _isAuthorized_isAuthorized(()),,
 "AbstractMessageIdAuthorizedIsm: sender is not the hook""AbstractMessageIdAuthorizedIsm: sender is not the hook"
));;
 requirerequire((
 msgmsg..value value << 22 **** VERIFIED_MASK_INDEX VERIFIED_MASK_INDEX,,
 "AbstractMessageIdAuthorizedIsm: msg.value must be less than 2"AbstractMessageIdAuthorizedIsm: msg.value must be less than 2
^255"^255"
));;

 verifiedMessagesverifiedMessages[[messageIdmessageId]] == msg msg..valuevalue..setBitsetBit((VERIFIED_MASK_INDEXVERIFIED_MASK_INDEX

 Hyperlane Security Audit | 10© 2024 ChainLight, Theori. All rights reserved

));;
 emitemit ReceivedMessageReceivedMessage((messageIdmessageId));;
 }}

However releaseValueToRecipient is publicly accessible function that allows any user to
prematurely trigger the release of funds to the recipient of the message. This premature release
can lead to a scenario where funds transferred from various chain-specific portal contracts are
locked and become irretrievable.

// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol
 functionfunction releaseValueToRecipientreleaseValueToRecipient((bytesbytes calldatacalldata message message)) publicpublic {{
 bytes32bytes32 messageId messageId == message message..idid(());;
 uint256uint256 _msgValue _msgValue == verifiedMessages verifiedMessages[[messageIdmessageId]]..clearBitclearBit((
 VERIFIED_MASK_INDEXVERIFIED_MASK_INDEX
));;
 ifif ((_msgValue _msgValue >> 00)) {{
 verifiedMessagesverifiedMessages[[messageIdmessageId]] -=-= _msgValue _msgValue;;
 payablepayable((messagemessage..recipientAddressrecipientAddress(())))..sendValuesendValue((_msgValue_msgValue));;
 }}
 }}

Impact
High

It can lead to the user funds losses as the funds sent from various chain-specific portal contracts
could be locked or exploited.

ideal scenario
relayer (or someone) finalize the L2 transaction
relayer/user calls process

process calls ism.verify
ism.verify releases the funds to the message's recipient if the bridged transaction
has value
call handle function of the recipient

recipient uses address(this).balance , since ism transfers the fund to the
recipient.

attack scenario
relayer (or someone) finalize the L2 transaction

 Hyperlane Security Audit | 11© 2024 ChainLight, Theori. All rights reserved

attacker calls ism.verify or ism.releaseValueToRecipient
it release the funds to the message's recipient if the bridged transaction has value.
and subtract the value to 0.

attacker calls process
recipient uses victim's value (balance)

relayer/user calls process
process calls ism.verify

ism.verify returns success, but it does not transfer any funds since there isn't
remained fund.
call handle function of the recipient

recipient uses address(this).balance , but it's 0 at this moment.

Recommendation
The monkey patch could be add ACL on the both functions. (only callable by Mailbox).

Remediation
Reported

 Hyperlane Security Audit | 12© 2024 ChainLight, Theori. All rights reserved

#2 HL2408-002 OPL2ToL1Ism can be bypassed �Any message can

be delivered)

ID Summary Severity

HL2408-002
OPL2ToL1Ism._verifyWithPortalCall() does not check
metadata , which allows any messages to be delivered.

Critical

Description
The OPL2ToL1Ism._verifyWithPortalCall() does not check metadata . While
OPL2ToL1Ism.verify() is intended to check messages delivered by the OPL2ToL1Hook , the

lack of metadata check enables this process to be bypassed. Consequently, an attacker can
bypass the OPL2ToL1Ism verification process by sending a transaction directly to the OP portal.

Impact
Critical

An attacker can craft messages that bypass OPL2ToL1Ism verification.

Recommendation
 it mitigates these kind of issues.

 function verify(function verify(
 bytes calldata metadata, bytes calldata metadata,
 bytes calldata message bytes calldata message
) external override returns (bool) {) external override returns (bool) {
 bool verified = isVerified(message); bool verified = isVerified(message);
 if (!verified) { if (!verified) {
 _verifyWithPortalCall(metadata, message); _verifyWithPortalCall(metadata, message);
 } }
++ require(isVerified(message)); require(isVerified(message));
 releaseValueToRecipient(message); releaseValueToRecipient(message);
 return true; return true;
 } }

 Hyperlane Security Audit | 13© 2024 ChainLight, Theori. All rights reserved

 properly check the L2's sender like ArbL2ToL1Ism does.

 // check if the sender of the l2 message is the authorized hook// check if the sender of the l2 message is the authorized hook
 requirerequire((
 l2Sender l2Sender ==== TypeCasts TypeCasts..bytes32ToAddressbytes32ToAddress((authorizedHookauthorizedHook)),,
 "ArbL2ToL1Ism: l2Sender != authorizedHook""ArbL2ToL1Ism: l2Sender != authorizedHook"
));;

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 14© 2024 ChainLight, Theori. All rights reserved

#3 HL2408-003 ACL or replay protection must be added to

AbstractMessageIdAuthHook.postDispatch()

ID Summary Severity

HL2408-003

When a user sends a message using an ISM that inherits
AbstractMessageIdAuthorizedIsm with funds, an

attacker can replay the message, causing the user's funds to
be permanently locked within the ISM.

High

Description
The AbstractMessageIdAuthHook.postDispatch() does not verify whether the
msg.sender is a Mailbox or wether the message is being replayed. Consequently, an attacker

can resend the same interchain message immediately after Mailbox.dispatch() is called.

For example, suppose Alice sends an interchain message with 1 ether using the OP Stack ISM from
L1. The Mailbox.dispatch() calls OPStackHook.postDispatch() , followed by the
OPStackISM.verifyMessageId(messageId) being triggered in L2 by the deposit transaction.

Under normal circumstances, when releaseValueToRecipient() is invoked, the
verifiedMessages[messageId] �1 ether) will be transferred to the recipient.

// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol// solidity/contracts/isms/hook/AbstractMessageIdAuthorizedIsm.sol
 functionfunction verifyMessageIdverifyMessageId((bytes32bytes32 messageId messageId)) publicpublic payablepayable virtual virtual {{
 requirerequire((
 _isAuthorized_isAuthorized(()),,
 "AbstractMessageIdAuthorizedIsm: sender is not the hook""AbstractMessageIdAuthorizedIsm: sender is not the hook"
));;
 requirerequire((
 msgmsg..value value << 22 **** VERIFIED_MASK_INDEX VERIFIED_MASK_INDEX,,
 "AbstractMessageIdAuthorizedIsm: msg.value must be less than 2"AbstractMessageIdAuthorizedIsm: msg.value must be less than 2
^255"^255"
));;

 verifiedMessagesverifiedMessages[[messageIdmessageId]] == msg msg..valuevalue..setBitsetBit((VERIFIED_MASK_INDEXVERIFIED_MASK_INDEX
));;

 Hyperlane Security Audit | 15© 2024 ChainLight, Theori. All rights reserved

 emitemit ReceivedMessageReceivedMessage((messageIdmessageId));;
 }}

However, an attacker can replay the message with 0 msg.value by calling
OPStackHook.postDispatch() immediately after the user calls Mailbox.dispatch() . This

causes OPStackISM.verifyMEssageId(messageId) to be called again, leading to
verifiedMessages[messageId] being set 0 + VERIFIED_MASK . Since the
verifiedMessages value is overwritten with 0, the user's funds become permanently locked

within the ISM.

Impact
High

User funds sent via interchain messages can become temporarily locked in the ISM (e.g.,
OPL2ToL1Ism, ArbL2ToL1Ism, LayerZeroV2Ism).

Recommendation
It is recommended to add the onlyMailbox() modifier to
AbstractMessageIdAuthHook._postDispatch() and to implement replay protection in
AbstractMessageIdAuthorizedIsm.verifyMessageId() .

Remediation
Patched

Replay protection has been implemented by adding the check
require(verifiedMessages[messageId] == 0) .

 Hyperlane Security Audit | 16© 2024 ChainLight, Theori. All rights reserved

#4 HL2408-004 Users assets could be locked in the interchain

account

ID Summary Severity

HL2408-004
The InterchainAccountRouter must transfer
msg.value during multicall execution.

Medium

Description

// File: https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/b1d8bb87// File: https://github.com/hyperlane-xyz/hyperlane-monorepo/blob/b1d8bb87
77684cfc863020d9f2eb170f166c112c/solidity/contracts/middleware/InterchainA77684cfc863020d9f2eb170f166c112c/solidity/contracts/middleware/InterchainA
ccountRouter.sol#L293-L310ccountRouter.sol#L293-L310
 functionfunction handlehandle((
 uint32uint32 _origin _origin,,
 bytes32bytes32 _sender _sender,,
 bytesbytes calldatacalldata _message _message
)) externalexternal payablepayable override onlyMailbox override onlyMailbox {{ // (A)// (A)
 ((
 bytes32bytes32 _owner _owner,,
 bytes32bytes32 _ism _ism,,
 CallLibCallLib..CallCall[[]] memorymemory _calls _calls
)) == InterchainAccountMessage InterchainAccountMessage..decodedecode((_message_message));;

 OwnableMulticall _interchainAccount OwnableMulticall _interchainAccount == getDeployedInterchainAccountgetDeployedInterchainAccount
((
 _origin_origin,,
 _owner_owner,,
 _sender_sender,,
 _ism_ism..bytes32ToAddressbytes32ToAddress(())
));;
 _interchainAccount_interchainAccount..multicallmulticall((_calls_calls));; // (B)// (B)
 }}

 Hyperlane Security Audit | 17© 2024 ChainLight, Theori. All rights reserved

An interchain account supports to receive a native value from other chains (A) , however the
interchain account contract does not transfer the received value to the multicall contract.

Impact
Medium

Recommendation
handle() should send the value when it calls to the OwnableMulticall.multicall on (B) .

(i.e. add {value: msg.value})

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 18© 2024 ChainLight, Theori. All rights reserved

#5 HL2408-005 _sendMessageId() of OPStackHook and

ArbL2ToL1Hook should consider the case where msg.value and

metadata.msgValue(0) are different

ID Summary Severity

HL2408-005
The _sendMessageId() in OPStackHook and
ArbL2ToL1Hook should consider scenarios where
msg.value and metadata.msgValue(0) do not match.

Low

Description
The _sendMessageId() in OPStackHook and ArbL2ToL1Hook does not return the excess
amount to the user when msg.value exceeds metadata.msgValue(0) . In such cases, the
excess remains in the Hook contract. Moreover, it does not validate the case where msg.value is
less than metadata.msgValue(0) , allowing an attacker to set msg.value to 0 and
metadata.msgValue(0) to the ETH balance held by the Hook contract, thereby enabling the

theft of ETH left in the contract.

Impact
Low

If msg.value is greater than metadata.msgValue(0) , the excess ETH will be retained in the
contract, which an attacker could later extract by setting a higher metadata.msgValue(0) .

Recommendation
 Add a check require(msg.value >= metadata.msgValue(0)); in the

_sendMessageId() of OPStackHook and ArbL2ToL1Hook .

 Implement logic to return any excess amount to the user (message.sender()) if msg.value
exceeds metadata.msgValue(0) .

Remediation
Patched

 Hyperlane Security Audit | 19© 2024 ChainLight, Theori. All rights reserved

The issue has been resolved as recommended.

 Hyperlane Security Audit | 20© 2024 ChainLight, Theori. All rights reserved

#6 HL2408-006 HypERC4626 does not work as a rebasing token

ID Summary Severity

HL2408-006
HypERC4626 was intended to be a rebasing token; however,

some function overrides are missing.
Medium

Description
A rebasing token is designed to have its total supply fluctuate dynamically. The HypERC4626
contract is a rebasing token that reflects the yields generated on the origin chain to the token
balance. However, the contract does not fully support rebasing functionality because the
transferFrom() and totalSupply() functions were not overridden to support the rebasing

token function.

Impact
Medium

Due to inconsistent handling between underlying amounts and share amounts, users may
experience confusion. Some functions operate based on the underlying amount (transfer()),
while others rely on the share amount (transferFrom()).

Recommendation
 Override transferFrom() to function similarly to the redefined transfer() .

 Override totalSupply() to return sharesToAssets(super.totalSupply()) .

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 21© 2024 ChainLight, Theori. All rights reserved

#7 HL2408-007 Wrapped HypERC4626 should be implemented for

interoperability

ID Summary Severity

HL2408-007

Given that HypERC4626 is a rebasing token, it's clear that
integrating it into DeFi protocols presents significant
challenges. To address this, we recommend the creation of a
wrapper contract to facilitate its use.

Informational

Description
Rebasing tokens dynamically adjusts token balances, which can present difficulties when used in
DeFi protocols. For example, if a pair on UniswapV2 includes a rebasing token, the yield generated
can be claimed by anyone via skim() . This scenario forces liquidity providers who supply
rebasing tokens to forgo their yield while maintaining their liquidity positions, which is unfavorable.

As a result, many rebasing tokens utilize wrapped rebasing token contracts. These contracts
transfer rebasing tokens based on share units and return balances in share units, preventing
automatic balance adjustments.

Impact
Informational

Recommendation
Developing wrapped rebasing token contracts like wstETH to support HypERC4626 in DeFi
protocols is recommended.

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 22© 2024 ChainLight, Theori. All rights reserved

#8 HL2408-008 Custom Hook Quote is not considered in the

message dispatch process

ID Summary Severity

HL2408-008

The Message Dispatch Process doesn't factor in Custom
Hook Quotes when calculating the Relay Fee Quote. The relay
process will always fail if the system includes an expensive
Custom Hook.

Informational

Description
The Mailbox.dispatch() function contains the following logic to handle underpayments:

// solidity/contracts/Mailbox.sol#L298-L305// solidity/contracts/Mailbox.sol#L298-L305
// ...// ...
uint256uint256 requiredValue requiredValue == requiredHook requiredHook..quoteDispatchquoteDispatch((metadatametadata,, message message));;
ifif ((msgmsg..value value << requiredValue requiredValue)) {{
 msgmsg..value value == requiredValue requiredValue;;
}}
requiredHookrequiredHook..postDispatchpostDispatch{{valuevalue:: requiredValue requiredValue}}((metadatametadata,, message message));;
hookhook..postDispatchpostDispatch{{valuevalue:: msg msg..value value -- requiredValue requiredValue}}((metadatametadata,, message message));;
// ...// ...

This causes a revert in the requiredHook when the msg.value is less than the required
amount. However, the calculation of requiredValue only considers the result from
requiredHook.quoteDispatch() and does not consider the value from
hook.quoteDispatch() when determining the total amount needed for dispatch.

Impact
Informational

The relay process will fail under these conditions:

 The requiredHook.quoteDispatch() function returns 0.

 Hyperlane Security Audit | 23© 2024 ChainLight, Theori. All rights reserved

 msg.value is 0 during dispatch.

 A computationally expensive Custom Hook is used.

Recommendation
Modify the requiredValue calculation in the Mailbox.dispatch() function to include both
requiredHook.quoteDispatch(metadata, message) and
hook.quoteDispatch(metadata, message) .

This adjustment ensures that the costs from both requiredHook and hook are considered,
aligning the logic with the intended design of the Mailbox.quoteDispatch() function.
(requiredValue = requiredHook.quoteDispatch(metadata, message) +
hook.quoteDispatch(metadata, message))

Remediation
Won't Fix

The client said that this is a known gas optimization issue and stated that callers must handle
quoting outside of the mailbox, ideally off-chain.

 Hyperlane Security Audit | 24© 2024 ChainLight, Theori. All rights reserved

#9 HL2408-009

HypERC4626OwnerCollateral._transferFromSender() must

return HypERC4626.PRECISION on the remote chain

ID Summary Severity

HL2408-009
HypERC4626OwnerCollaeteral sends a message with

incorrect token metadata, which causes the sender's funds to
be temporarily frozen in the contract.

High

Description
The HypERC4626OwnerCollateral contract sends a message with _tokenMetadata as
bytes("") to HypERC4626 on the remote chain. HypERC4626._handle() , which is called

during message processing in the remote chain, tries to abi.decode() the passed empty token
metadata into uint256 . This always results in a revert.

As a result, the message sender cannot receive the message on the remote chain, and funds
become temporarily locked in the HypERC4626OwnerCollateral contract.

Impact
High

The sender's deposited assets at the origin chain to be temporarily frozen because of inability to
receive messages on the remote chain. �Since the HypERC4626OwnerCollateral contract is a
proxy implementation, the owner can recover the locked assets through a contract upgrade.)

Recommendation
It is recommended that HypERC4626OwnerCollateral._transferFromSender() be modified
to return the HypERC4626.PRECISION value from the remote chain.

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 25© 2024 ChainLight, Theori. All rights reserved

#10 HL2408-010 AbstractAggregationIsm.verify() fails when

M is not equal to N

ID Summary Severity

HL2408-010
AbstractAggregationIsm.verify() will only succeed

when exactly the required number of ISM verifications pass,
due to multiple issues.

Medium

Description
AbstractAggregationIsm.verify() reverts the entire transaction if any ISM verification fails

or throws an error, preventing partial success in the intended m-of-n verification model.
Additionally, the function decrements a threshold for each successful verification, which can lead
to integer underflow if more ISMs pass than required, causing the transaction to fail unexpectedly.

In the case of RateLimitedIsm.verify() , the verification may fail even if a transaction
simulation by a relayer was successful, due to state changes by other transactions included earlier
in the same block.

Impact
Medium

These issues make AbstractAggregationIsm.verify() prone to failure in most cases unless
M equals N.

Suppose a relayer simulates ISM verification and only submits the required data. In that case,
failures will be rare but still possible when there is a discrepancy between the simulation and
actual execution.

Recommendation
Use try-catch to handle ISM verification errors, and do not revert when false is returned. If
less trusted ISMs are included, consider using an assembly call with limited gas and return data
size.

Successful verifications should be counted and compared with the threshold rather than
decrementing the threshold.

 Hyperlane Security Audit | 26© 2024 ChainLight, Theori. All rights reserved

Remediation
Won't Fix

The client said that relayers aim to minimize costs and prefer not to verify more ISMs than
necessary.

 Hyperlane Security Audit | 27© 2024 ChainLight, Theori. All rights reserved

#11 HL2408-011 HypERC4626._handle() should restrict out-of-

order updates of the exchangeRate

ID Summary Severity

HL2408-011
The HypERC4626._handle() can decrease the exchange
rate if messages are processed out of order, potentially
leading to user fund losses in certain situations.

Medium

Description
The HypERC4626._handle() parses the exchange rate from the token metadata in process
messages and saves it in the exchangeRate variable. However, an outdated exchange rate may
be saved since the message process order from the remote chain is not guaranteed. In a typical
ERC4626, the exchange rate monotonically increases unless there has been a loss. However, if
messages are processed out of order, the exchange rate could decrease, potentially reducing user
token balances and causing losses.

Impact
Medium

When HypERC4626 is used with DeFi protocols, users' assets could be lost due to the unordered
message execution affecting the exchange rate. However, when assets are transferred back to the
origin chain, they are sent based on shares, preventing direct loss in such cases.

Recommendation
The following measures are recommended:

 Include the nonce when sending messages from the HypERC4626Collateral contract to
the remote chain.

 Record the last nonce each time the exchange rate is updated in HypERC4626._handle() .

 Only update the exchange rate if the previous nonce is less than the nonce in the token
metadata.

 Hyperlane Security Audit | 28© 2024 ChainLight, Theori. All rights reserved

Remediation
Patched

The issue has been resolved as recommended.

 Hyperlane Security Audit | 29© 2024 ChainLight, Theori. All rights reserved

#12 HL2408-012 Minor Issues

ID Summary Severity

HL2408-012

The description includes multiple suggestions for preventing
incorrect settings caused by operational mistakes, mitigating
potential issues, improving code maturity and readability, and
other minor issues.

Informational

Description
Operational Risk Mitigation / Sanity Check

RateLimited.setRefillRate() allows unrestricted setting of the _capacity value. If
_capacity is set to a value smaller than DURATION , the refillRate may be set to zero,

causing a revert in calculateCurrentLevel() . It is recommended to enforce the condition
_capacity >= DURATION to ensure a minimum refillRate .

In the TrustedRelayerIsm constructor, verify that the mailbox and trustedRelayer
addresses are not zero to prevent configuration errors.

AttributeCheckpointFraud , Mailbox , MailboxClient , and ProtocolFee are
recommended to use Ownable2Step to avoid the risk of losing ownership.

In TypeCasts.bytes32ToAddress() , add check require(uint256(_buf) <=
uint256(type(uint160).max)); to ensure valid address conversion.

For ArbL2ToL1Ism , OPL2ToL1Ism._verifyWithPortalCall() , and
LayerZeroV2Ism.lzReceive() , it is recommended to verify the function signature using
require(AbstractMessageIdAuthorizedIsm.verifyMessageId == data[0:4]); .

In HypERC4626Collateral and HypERC4626._transferRemote() , add
require(address(hook) == _hook); to prevent potential user fund losses by ensuring

that the correct hook is specified.

It is advised to adjust the PRECISION value in HypERC4626 and HypERC4626Collateral
from 1e10 to IERC20(vault.asset()).decimals() to avoid precision loss.

In ArbL2ToL1Ism.verify() , after executing _verifyWithOutboxCall() , add
require(isVerified(message)); for added security, similar to recommendations from

 Hyperlane Security Audit | 30© 2024 ChainLight, Theori. All rights reserved

issue �HL2408�01�.
In HypERC20Collateral.constructor() , verify that the erc20 address is not zero to
prevent issues.

�EigenLayer) The ECDSAStakeRegistry._updateMinimumWeight() function should
validate that the _newMinimumWeight value is greater than the minimum threshold.

�EigenLayer) In the constructor of ECDSAStakeRegistry , the _disableInitializers()
function is commented out. This should be re-enabled in the production environment to ensure
initialization safety.

Code Maturity

The condition metadata.msgValue(0) < 2 ** 255 in OPStackHook._sendMessageId()
is redundant since it is already validated in _postDispatch() . Removing this condition is
recommended to improve code readability.

Other Recommendations

In OPL2ToL1Hook._sendMessageId() , replace require(msg.value >=
metadata.msgValue(0) + GAS_QUOTE) with require(msg.value >=
metadata.msgValue(0)) , as GAS_QUOTE is already accounted for in L2 execution.

The exchangeRate calculation in HypERC4626Collateral may differ from the ERC4626
standard. Modify the calculation to vault.convertToAssets(PRECISION) for consistency.

HypERC4626Collateral.rebase() should allow specifying hook metadata and hook
addresses to prevent failures during message processing on the remote chain. Modify the
function to accept these parameters.

In InterchainAccountRouter.handle() , it is crucial to verify that _sender is an
authorized InterchainAccountRouter from the origin chain to prevent manipulation of _owner
and _ism . This validation should be added.

InterchainAccountRouter lacks a dispatch function to specify the _hook address. Add
this functionality to ensure proper message handling, especially if isms are set to non-default
ISM addresses.

HypERC4626Collateral could be vulnerable to inflation attacks when using ERC4626
contracts prior to version 4.9. Developers should use ERC4626 version 4.9 or higher or account
for inflation risks.

 Hyperlane Security Audit | 31© 2024 ChainLight, Theori. All rights reserved

�EigenLayer) The ECDSAStakeRegistry.isValidSignature() function does not fully
comply with the ERC�1271 standard. It should handle failure cases in _checkSignatures()
using a try-catch block and return the function selector 0xffffffff when an exception
occurs.

Missing / Confusing Events

In RateLimited.validateAndConsumeFilledLevel() , it is recommended to emit events
for changes in filledLevel and lastUpdated values for operational transparency.

For MailboxClient.setHook() and
MailboxClient.setInterchainSecurityModule() , emit events when state values are

modified to ensure transparency.

Emit events in GasRouter.setDestinationGas() whenever destination gas settings
change to provide visibility.

In HyperlaneServiceManager , emit events for changes in freezeoperator and
setSlasher to improve operational clarity.

ProtocolFee.setProtocolFee and ProtocolFee.setBeneficiary should emit events
when state values are changed to ensure transparency.

�EigenLayer) For transparency in operations, it's recommended that
setPaymentCoordinator and updateAVSMetadataURI in ECDSAServiceManagerBase

emit events reflecting their changed state values.

Impact
Informational

Recommendation
Consider applying the suggestions in the description above.

Remediation
Patched

Most of the issues have been resolved.

 Hyperlane Security Audit | 32© 2024 ChainLight, Theori. All rights reserved

Revision History

Version Date Description

1.0 Dec 3, 2024 Initial version

Hyperlane Security Audit | 33© 2024 ChainLight, Theori. All rights reserved

Theori, Inc. (“We”) is acting solely for the client and is not responsible to any other party.
Deliverables are valid for and should be used solely in connection with the purpose for which they
were prepared as set out in our engagement agreement. You should not refer to or use our name
or advice for any other purpose. The information (where appropriate) has not been verified. No
representation or warranty is given as to accuracy, completeness or correctness of information in
the Deliverables, any document, or any other information made available. Deliverables are for the
internal use of the client and may not be used or relied upon by any person or entity other than the
client. Deliverables are confidential and are not to be provided, without our authorization
(preferably written), to entities or representatives of entities (including employees) that are not the
client, including affiliates or representatives of affiliates of the client.

Hyperlane Security Audit | 34© 2024 ChainLight, Theori. All rights reserved

